
Nonlinear Dyn (2016) 83:2143–2155
DOI 10.1007/s11071-015-2471-9

ORIGINAL PAPER

Anti-synchronization of coupled memristive neutral-type
neural networks with mixed time-varying delays via
randomly occurring control

Weiping Wang · Lixiang Li · Haipeng Peng ·
Weinan Wang · Jürgen Kurths · Jinghua Xiao ·
Yixian Yang

Received: 26 May 2014 / Accepted: 24 October 2015 / Published online: 13 November 2015
© Springer Science+Business Media Dordrecht 2015

Abstract In this paper, a class of coupled memris-
tive neural networks of neutral type with mixed time-
varying delays via randomly occurring control is stud-
ied in order to achieve anti-synchronization. Themodel
of the coupled memristive neural networks of neu-
tral type with mixed time-varying delays is less con-
servative than those of traditional memristive neural
networks. Some criteria are obtained to guarantee the
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anti-synchronization between the drive system and the
response system. Two kinds of randomly occurring
memristor-based controllers are designed. The analysis
in this paper employs the differential inclusions theory,
linear matrix inequalities, and the Lyapunov functional
method. In addition, the new proposed results here are
very easy to verify and also extend the results of earlier
publications. Numerical examples are given to show
the effectiveness of our results.

Keywords Memristive neural networks · Neutral-
type · Mixed delays · Randomly occurring control

1 Introduction

In the past decades, in order to process information
intelligently, artificial neural networks haven been pro-
posed to simulate the function of human brain. Tra-
ditional artificial neural networks have been imple-
mented with a circuit, and the connection between
neural processing units is realized with a resistor. The
resistance is equal to the strength of synapses between
neurons. The strength of the synapses is a variable,
while the resistance is invariable. Combining the mem-
ory characteristic of memristor, the resistor is replaced
by a memristor in order to simulate artificial neural
network better, and a memristor eventually may be
used in artificial neural networks. Recently, the authors
in [1–4] have concentrated on the dynamical nature
of memristor-based neural networks in order to use it
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in applications, such as pattern recognition, associa-
tive memories, and learning, in a way that mimics the
human brain.

It is well known that time delays generate com-
plex and unpredictable behaviors in practice and are
often caused by finite switching speeds of the ampli-
fiers. Therefore, much effort has been paid in recent
years for analyzing dynamic behaviors of neural net-
workswith various types of timedelays (see [5–8]). The
constant time delays, and the time-varying delays have
been studied in [9,10]. Note that the neural signal prop-
agation is often distributed during a certain time period
in the presence of an amount of parallel pathwayswith a
variety of axon sizes and lengths. Hence, the authors in
[11–13] have concentrated on the discrete and distrib-
uteddelays. In addition, anti-synchronization control of
neural networks plays an important role inmany poten-
tial applications, e.g., nonvolatilememories, neuromor-
phic devices to simulate learning, adaptive, and spon-
taneous behaviors. However, up to now, there are few
studies on the anti-synchronization control of memris-
tive neural networks with distributed delays and dis-
crete delays.

On the other hand, due to the complicated dynamic
properties of the neural cells in the real world, there
exist many neural network models such as recurrent
neural networks [14], fuzzy neural networks [15],
and bidirectional associative memory neural networks
[16,17] that cannot characterize the properties of a
neural reaction process precisely. It is natural and
important that systems will contain some information
about the derivative of previous state. This kind of
neural network is termed as neutral-type neural net-
work. In recent years, there has been a growing research
interest in the study of delayed neural networks of neu-
tral type (see [18–22]).However, therewere few studies
to analyze the anti-synchronization control of coupled
memristive neutral-type neural networks with discrete
and distributed time-varying delays (mixed delays).

And due to the fact that signals in networked sys-
tems are not transmitted perfectly or the control is not
available, as in the cases of packet dropouts, random
failures, and repairs of actuators, control should be sus-
pended from time to time. Therefore, control activation
and networked systems may occur in a probabilistic or
switching way and are randomly changeable in terms
of their types or intensity. So the main contributions to
this paper are as follows:

1. we fill the gap on anti-synchronization control of
coupled neutral-type memristive neural networks
with mixed delays;

2. we propose a less conservative model of the cou-
pled neutral-type memristive neural networks with
mixed time-varying delays;

3. we propose two kinds of memristor-based ran-
domly occurring controllers, i.e., memristor-based
delay-independent controller and memristor-based
delay-dependent controller. The memristor-based
delay-dependent controller is less conservative than
the other one. Some criteria are obtained to guar-
antee the anti-synchronization between coupled
memristive neural networks of neutral type with
mixed delays.

2 Preliminaries

Based on the physical properties of memristor, the
memristor-based neural networks of neutral type with
time-varying mixed delays are described by (i =
1, 2, . . . , n)

d [xi (t) − di xi (t − τ1(t))]

=
⎡
⎣−ci xi (t) +

n∑
j=1

ai j (xi (t)) f̃ (x j (t))

+
n∑
j=1

bi j (xi (t))g̃(x j (t − τ2(t)))

+
n∑
j=1

ei j (xi (t))
∫ t

t−τ3(t)
h̃(x j (s))ds

⎤
⎦ dt,

(1)

where xi (t) is the voltage of capacitor Ci . ai j (xi (t)),
bi j (xi (t)), ei j (xi (t)) represent memristor-based

weights, ai j (xi (t)) = W(1)i j
Ci × sgini j , bi j (xi (t)) =

W(2)i j
Ci × sgini j , ei j (xi (t)) = W(3)i j

Ci × sgini j , and

sgini j =
{
1, i �= j
−1, i = j,

in which W(1)i j , W(2)i j , W(3)i j denote the memduc-
tances of memristors R1, R2, R3. R1, R2, R3 represent
the memristors.

Combining with the physical structure of a memris-

tor device, one can see that W(1)i j = dq(1)i j

dσ(1)i j
, W(2)i j =
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dq(2)i j

dσ(2)i j
, W(3)i j = dq(3)i j

dσ(3)i j
, where q(1)i j , q(2)i j , q(3)i j and

σ(1)i j , σ(2)i j , σ(3)i j denote charge and magnetic flux of
the memristors R1, R2, R3, respectively.

Many studies show that pinched hysteresis loop is
the fingerprint of memristive devices. Under different
pinched hysteresis loops, the evolutionary process of
memristive systems evolves into different forms. It is
generally known that the pinched hysteresis loop is due
to the nonlinearity of the memductance function. The
memductance functions W(1)i j , W(2)i j , and W(3)i j are
given by:

W(1)i j = l(1)i j + 3l(2)i jσ
2
(1)i j ,

W(2)i j = l(3)i j + 3l(4)i jσ
2
(2)i j ,

W(3)i j = l(5)i j + 3l(6)i jσ
2
(3)i j ,

where l(1)i j , l(2)i j , l(3)i j , l(4)i j , l(5)i j , l(6)i j are con-
stants, i, j = 1, 2, . . . , n. According to the feature
of a memristor, ai j (xi (t)), bi j (xi (t)), ei j (xi (t)) are
continuous functions, âi j ≤ ai j (xi (t)) ≤ ǎi j , b̂i j ≤
bi j (xi (t)) ≤ b̌i j , and êi j ≤ ei j (xi (t)) ≤ ěi j , for
i, j = 1, 2, . . . , n, where âi j , ǎi j , b̂i j , b̌i j , êi j , ěi j are
constants. A(xi (t)) = (ai j (xi (t)))n×n and B(xi (t)) =
(bi j (xi (t)))n×n are memristive connection weights,
which represent the neuron interconnection matrix and
the delayed neuron interconnection matrix, respec-
tively. In the artificial neural networks, the memristors
worked as synaptic weights. The connection weights

A(xi (t)) = (
ai j (xi (t))

)
n×n ,

B(xi (t)) = (
bi j (xi (t))

)
n×n ,

E(xi (t)) = (
ei j (xi (t))

)
n×n ,

change according to the state of each subsystem.
If A(xi (t)) = (ai j (xi (t)))n×n , B(xi (t)) = (ai j
(xi (t)))n×n and E(xi (t)) = (ei j (xi (t)))n×nare con-
stants, the system (1) will reduce to a general net-
work. D = diag(d1, . . . , dn) > 0 and C =
diag(c1, . . . , cn) > 0 are self-feedback connec-
tion matrices. f̃ (x(t)) = [ f̃ (x1(t)), . . . , f̃ (xn(t))]T,
g̃(x(t)) = [g̃(x1(t)), . . . , g̃(xn(t))]T, and h̃(x(t)) =
[h̃(x1(t)), . . . , h̃(xn(t))]T are the neuron activation
functions. τ1(t), τ2(t), τ3(t) corresponds to the time-
varying transmission delays.

When N memristor-based neural networks of neu-
tral type with time-varying mixed delays are coupled

by a network, we obtain
d[xi (t) − di xi (t − τ1(t))]

=
[

− ci xi (t) +
n∑
j=1

ai j (xi (t)) f̃ (x j (t))

+
n∑
j=1

bi j (xi (t))g̃(x j (t − τ2(t)))

+
n∑
j=1

ei j (xi (t))
∫ t

t−τ3(t)
h̃(x j (s))ds

+
N∑
j=1

βmi j�x j (t)

]
dt, (2)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T is the state
variable of the i th memristive neural network. Sup-
pose each memristive neural network is a node, and the
information between two nodes is transmitted via an
edge. M = (mi j )N×N represents the coupling matrix,
and if there is an edge from memristive neural net-
work j to i , then mi j = 1; otherwise, mi j = 0(i �= j).
Andmii = −∑N

j=1, j �=i mi j . β represents the coupling
strength. The positive definite diagonal matrix� stands
for the inner coupling between two connected memris-
tive neural networks.

In this paper, we use the following assumptions and
definitions.

Assumption 1 In this paper τ1(t), τ2(t), τ3(t) are dif-
ferential functions with τ̇1(t) < μ1 < 1, τ̇2(t) < μ2 <

1, τ̇3(t) < μ3 < 1, and τ1(t) < τ1, τ2(t) < τ2,
τ3(t) < τ3, where τ1, τ2, τ3, μ1, μ2, μ3 are positive
constants.

Assumption 2 The functions f̃i , g̃i , and h̃i are boun-
ded and odd functions.

Assumption 3 For i, j = 1, 2, . . . , n,

co{âi j , ǎi j } f̃ j (x j (t)) + co{âi j , ǎi j } f̃ j (y j (t))
⊆ co{âi j , ǎi j }( f̃ j (x j (t)) + f̃ j (y j (t))),

co{b̂i j , b̌i j }g̃ j (x j (t − τ2(t))) + co{b̂i j , b̌i j }g̃ j (y j (t − τ2(t)))

⊆ co{b̂i j , b̌i j }(g̃ j (x j (t − τ2(t))) + g̃ j (y j (t − τ2(t)))).

co{b̂i j , b̌i j }h̃ j (x j (t − τ3(t))) + co{b̂i j , b̌i j }h̃ j (y j (t − τ3(t)))

⊆ co{b̂i j , b̌i j }(h̃ j (x j (t − τ3(t))) + h̃ j (y j (t − τ3(t)))).

Lemma 1 (see [23])For vectors a andb, the inequality
±2aTb ≤ aTSa + bTS−1b holds, in which S is any
matrix with S > 0.
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Lemma 2 (see [24]) For any positive definite matrix
W, a scalar r > 0 and a vector function η : [0, r ] →
Rn such that the integration concernedarewell defined,
then

(∫ r

0
η(s)ds

)T
W

(∫ r

0
η(s)ds

)
≤ r

∫ r

0
ηT(s)Wη(s)ds.

Definition 1 (see [25]) Suppose E ⊂ �n . Then, x �→
F(x) is called as a set-valued map defined on E , if
for each point x of E , there exists a corresponding
nonempty set F(x) ⊂ �n . A set-valued map F with
nonempty values is said to be upper semicontinuous at
x0εE if, for any open set N containing F(x0), there
exits a neighborhood M of x0 such that F(M) ⊂ N .
F(x) is said to have a closed image if for each xεE ,
F(x) is closed.

In this paper, solutions of all the systems con-
sidered in the following are intended in the Filip-
pov’s sense, where [·, ·] represents the interval. Let
āi j = max{âi j , ǎi j }, ai j = min{âi j , ǎi j }, b̄i j =
max{b̂i j , b̌i j },bi j = min{b̂i j , b̌i j }, ēi j = max{êi j , ěi j },
ei j = min{êi j , ěi j }, Ā = (āi j )n×n , B̄ = (b̄i j )n×n , Ē =
(ēi j )n×n , A = (ai j )n×n , B = (bi j )n×n , E = (ei j )n×n ,
for i = 1, 2, . . . , n. co{u, v} denotes the closure of a
convex hull generated by real numbers u and v or real
matrices u and v.

Based on Definition 1, by applying the theory of
differential inclusion, the memristor-based neural net-
works of neutral type with mixed delays can be written
as the following differential inclusion:

d[x(t) − Dx(t − τ1(t))]

ε

[
− Cx(t) +

n∑
j=1

co{ai j (xi (t))} f̃ (x(t))

+
n∑
j=1

co{bi j (xi (t))}g̃(x(t − τ2(t)))

+
n∑
j=1

co{ei j (xi (t))}

×
∫ t

t−τ3(t)
h̃(x(s))ds + βM�x(t)

]
dt.

(3)

The differential inclusion (3) means that there exist
ai j (t)εai j (xi (t)), bi j (t) εbi j (xi (t)), ei j (t)εei j (xi (t)),

and Ã(t) = (ai j (t))n×n , B̃(t) = (bi j (t))n×n , Ẽ(t) =
(ei j (t))n×n , such that

d[x(t) − Dx(t − τ1(t))] =
[
−Cx(t) + Ã(t) f̃ (x(t))

+B̃(t)g̃(x(t − τ2(t)))

+Ẽ(t)
∫ t

t−τ3(t)
h̃(x(s))ds + βM�x(t)

]
dt. (4)

Let system (4) be the drive system, and the response
system is as follows

d[y(t) − Dy(t − τ1(t))] =
[
−Cy(t) + Ã(t) f̃ (y(t))

+ B̃(t)g̃(y(t − τ2(t)))

+Ẽ(t)
∫ t

t−τ3(t)
h̃(y(s))ds + βM�y(t)

]
dt.

(5)

According to Assumptions 3, let e(t)=(e1(t), e2(t),
. . . , en(t))T be the anti-synchronization error, where
ei (t) = xi (t) + yi (t), ei (t − τ2(t)) = xi (t − τ2(t)) +
yi (t − τ2(t)), ei (t − τ3(t)) = xi (t − τ3(t)) + yi (t −
τ3(t)). Using the theories of set-valued maps and dif-
ferential inclusions, we can get the following anti-
synchronization error system

d[e(t) − De(t − τ1(t))]ε
[

− Ce(t) +
n∑
j=1

co{ai j (ei (t))} f (x(t))

+
n∑
j=1

co{bi j (ei (t))}g(e(t − τ2(t)))

+
n∑
j=1

co{ei j (ei (t))}
∫ t

t−τ3(t)
h(e(s))ds

+ βM�e(t)

]
dt.

(6)

Or equivalently, there exist ai j (t)εai j (ei (t)), bi j (t)
εbi j (ei (t)), ei j (t)εei j (ei (t)), and Ã(t) = (ai j (t))n×n ,
B̃(t) = (bi j (t))n×n , Ẽ(t) = (ei j (t))n×n , such that
d[e(t) − De(t − τ1(t))] = [−Ce(t) + Ã(t) f (e(t))

+B̃(t)g(e(t − τ2(t))) (7)

+Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds + βM�e(t)]dt,
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where f j (e j (t)) = f̃ j (x j (t)) + f̃ j (y j (t)), g j (e j (t −
τ2(t))) = g̃ j (x j (t − τ2(t))) + g̃ j (y j (t − τ2(t))),
h j (e j (t − τ3(t))) = h̃ j (x j (t − τ3(t))) + h̃ j (y j (t −
τ3(t))).

3 Main results

In this section, we investigate the anti-synchronization
control for the coupled memristor-based neural net-
works with mixed time-varying delays under the ran-
domly occurring control.

Theorem 1 Under Assumptions 1–3, the error system
(7) of the coupled memristor-based neural networks
of neutral type with mixed time-varying delays will be
convergent, if there exist a positive diagonal matrix
P = diag(P1, P2, . . . , Pn), positive matrices Q1, Q2,
Q3, Q4, Q5, Q6, Q7, Q8, S1, S2, and a positive scalarλ

such that the followingLMIs (LinearMatrix Inequality)
hold:

P ≤ λI, (8)

τ3(S1 + S2) < Q6,

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 ψ12 0 0 ψ15 0 0 ψ18 0
∗ ψ22 0 0 ψ25 0 0 ψ28 0
∗ ∗ ψ33 0 0 0 0 0 0
∗ ∗ ∗ ψ44 0 0 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ψ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ψ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

where

ψ11 = −2PC + 2βM�P − 2ρPK + P ĒS−1
1 ĒTPT

+ Q1 + Q2 + Q3,

ψ12 = DTPC − βDTPM�

+ ρDTPK , ψ15 = P Ā, ψ18 = P B̄,

ψ22 = PDT Ē S−1
2 ĒTDPT + (μ1 − 1)Q1,

ψ25 = −DT ĀP, ψ28 = −DT B̄ P,

ψ33 = (μ2 − 1)Q2, ψ44 = (μ3 − 1)Q3,

ψ55 = τ1Q7 + τ2Q8, ψ66 = Q4,

ψ77 = Q5 + τ3Q6, ψ88 = (μ2 − 1)Q4,

ψ99 = (μ3 − 1)Q5.

And the randomly occurring memristor-based con-
troller is designed as
u(e(t)) = −ρ(t)K (e(t))e(t), (10)

Ke(t) ≤ K (e(t))e(t) ≤ K̄ e(t), (11)
where K̃ (t)εco{K (e(t))} and ρ(t) is a stochastic vari-
able that describes the following random events for sys-
tem (7),

{
Event 1 : (7) experiences (10)
Event 2 : (7) does not experience (10)

(12)

Let ρ(t) be defined by

ρ(t) =
{
1, if Event 1 occurs,
0, if Event 2 occurs,

(13)

where E[ρ(t)] = ρε[0, 1].
Proof Construct the following Lyapunov–Krasovskii
function

V (t, e(t)) =
9∑

i=1

Vi (t, e(t)). (14)

Along the trajectory of system (7), we define an oper-
ator LV by

LV (t, e(t)) = Vt (t, e(t)) + Ve(t, e(t))[−Ce(t)

+ Ã(t) f (e(t)) + B̃(t)g(e(t − τ2(t)))

+ Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds

+ βM�e(t) + u(t)],

(15)

where Vt (t, e(t))= ∂V (t,e(t))
∂t , Ve(t, e(t))=(

∂V (t,e(t))
∂e1

,

∂V (t,e(t))
∂e2

, . . . ,
∂V (t,e(t))

∂en
),Vee(t, e(t))=(

∂2V (t,e(t))
∂e j ∂e j

)n×n ,
and the controller u(t) is designed to achieve the
synchronization of coupled memristor-based recurrent
neural network. And

V1(t, e(t)) = [e(t) − De(t − τ1(t))]
T P

[e(t) − De(t − τ1(t))] .
(16)

From (7) and (16), we get

LV1(t, e(t)) = 2[e(t) − De(t − τ1(t))]TP[−Ce(t)

+ Ã(t) f (e(t)) + B̃(t)g(e(t − τ2(t)))

+ Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds + βM�e(t)

−ρ(t)K̃ (t)e(t)]
= eT(t)[−2PC]e(t) + eT(t)[2P Ã(t)] f (e(t))
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+ eT(t)[2P B̃(t)]g(e(t − τ2(t)))

+ eT(t)[2P Ẽ(t)]
∫ t

t−τ3(t)
h(e(s))ds (17)

+ eT(t)[2βM�P]e(t)
+ eT(t)[2P(−ρ(t))K̃ (t)]e(t)
+ eT(t − τ1(t))[2DTPC]e(t)
+ eT(t − τ1(t))[−2DT Ã(t)P] f (e(t))
+ eT(t − τ1(t))[−2DTP B̃(t)]g(e(t − τ2(t)))

+ eT(t − τ1(t))[−2DTP Ẽ(t)]
∫ t

t−τ3(t)
h(e(s))ds

+ eT(t − τ1(t))[−2βDTPM�]e(t)
+ eT(t − τ1(t))[2DTPρ(t)K̃ (t)]e(t).

From Lemma 1, we get

eT(t)[2P Ẽ(t)]
∫ t

t−τ3(t)
h(e(s))ds

≤ eT(t)[P ĒS−1
1 ĒTPT]e(t)

+
[∫ t

t−τ3(t)
h(e(s))ds

]T
S1

[∫ t

t−τ3(t)
h(e(s))ds

]
,

(18)

and

eT(t − τ1(t))[−2DTP Ẽ(t)]
∫ t

t−τ3(t)
h(e(s))ds

≤ eT(t − τ1(t))[PDT Ē S−1
2 ĒTDPT]e(t − τ1(t))

+
[∫ t

t−τ3(t)
h(e(s))ds

]T
S2

[∫ t

t−τ3(t)
h(e(s))ds

]
.

(19)

Utilizing Lemma 2 yields
[∫ t

t−τ3(t)
h(e(s))ds

]T
(S1 + S2)

[∫ t

t−τ3(t)
h(e(s))ds

]

≤ τ3(t)
∫ t

t−τ3(t)
hT(e(s))(S1 + S2)h(e(s))ds

≤
∫ t

t−τ3(t)
hT(e(s))[τ3(S1 + S2)]h(e(s))ds.

(20)

According to Assumption 1, we have

V2(t, e(t)) =
∫ t

t−τ1(t)
eT(s)Q1e(s)ds.

LV2(t, e(t)) = eT(t)Q1e(t)

− (1 − τ̇1(t))e
T(t − τ1(t))Q1e(t − τ1(t))

≤ eT(t)Q1e(t) − eT(t − τ1(t))

×[(1 − μ1)Q1]e(t − τ1(t)). (21)

And we set

V3(t, e(t)) =
∫ t

t−τ2(t)
eT(s)Q2e(s)ds.

LV3(t, e(t)) = eT(t)Q2e(t)

−(1 − τ̇2(t))e
T(t − τ2(t))Q2e(t − τ2(t))

≤ eT(t)Q2e(t) − eT(t − τ2(t))

×[(1 − μ2)Q2]e(t − τ2(t)). (22)

By Ito’s differential formula studied in [26], we could
infer that

V4(t, e(t)) =
∫ t

t−τ3(t)
eT(s)Q3e(s)ds.

LV4(t, e(t)) = eT(t)Q3e(t) − (1 − τ̇3(t))

×eT(t − τ3(t))Q3e(t − τ3(t))

≤ eT(t)Q3e(t) − eT(t − τ3(t))

×[(1 − μ3)Q3]e(t − τ3(t)). (23)

And

V5(t, e(t)) =
∫ t

t−τ2(t)
gT(e(s))Q4g(e(s))ds.

LV5(t, e(t)) = gT(e(t))Q4g(e(t)) − (1 − τ̇2(t))

×gT(e(t − τ2(t)))Q4g(e(t − τ2(t)))

≤ gT(e(t))Q4g(e(t)) − gT(e(t − τ2(t)))

×[(1 − μ2)Q4]g(e(t − τ2(t))).

(24)

According to Assumption 1, we get

V6(t, e(t)) =
∫ t

t−τ3(t)
hT(e(s))Q5h(e(s))ds.

LV6(t, e(t)) = hT(e(t))Q5h(e(t)) − (1 − τ̇3(t))h
T

×(e(t − τ3(t)))Q5h(e(t − τ3(t)))

≤ hT(e(t))Q5h(e(t)) − hT(e(t − τ3(t)))

× [(1 − μ3)Q5] h(e(t − τ3(t))).

(25)

We set

V7(t, e(t)) =
∫ 0

−τ3(t)

∫ t

t+r
hT(e(s))Q6h(e(s))dsdr.

LV7(t, e(t)) = τ3(t)h
T(e(t))Q6h(e(t))

−
∫ t

t−τ3(t)
hT(e(s))Q6h(e(s))ds

≤ hT(e(t))[τ3Q6]h(e(t))

−
∫ t

t−τ3(t)
hT(e(s))Q6h(e(s))ds.

(26)
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From condition (9), we obtain∫ t

t−τ3(t)
hT(e(s))[τ3(S1 + S2)]h(e(s))ds

−
∫ t

t−τ3(t)
hT(e(s))Q6h(e(s))ds ≤ 0.

(27)

We set

V8(t, e(t)) =
∫ 0

−τ1(t)

∫ t

t+r
f T(e(s))Q7 f (e(s))dsdr.

LV8(t, e(t)) = τ1(t) f
T(e(t))Q7 f (e(t))

−
∫ t

t−τ1(t)
f T(e(s))Q7 f (e(s))ds

≤ f T(e(t))[τ1Q7] f (e(t)). (28)

And

V9(t, e(t)) =
∫ 0

−τ2(t)

∫ t

t+r
f T(e(s))Q8 f (e(s))dsdr.

LV9(t, e(t)) = τ2(t) f
T(e(t))Q8 f (e(t))

−
∫ t

t−τ2(t)
f T(e(s))Q8 f (e(s))ds

≤ f T(e(t))[τ2Q8] f (e(t)). (29)

Substituting inequalities (16)–(29) into (15), we obtain

E[LV (t, e(t))] ≤ eT(t)[−2PC + 2βM�P − 2ρPK

+ P ĒS−1
1 ĒTPT

+ Q1 + Q2 + Q3]e(t) + eT(t)[2P Ā] f (e(t))
+ eT(t)[2P B̄]g(e(t − τ2(t))) + eT(t − τ1(t))

× [2DTPC − 2βDTPM� + 2ρDTPK ]e(t)
+ eT(t − τ1(t))[−2DT ĀP] f (e(t))
+ eT(t − τ1(t))[−2DTP B̄]g(e(t − τ2(t)))

+ eT(t − τ1(t))[PDT Ē S−1
2 ĒTDPT

+ (μ1 − 1)Q1]e(t − τ1(t)) + eT(t − τ2(t))

+ [(μ2 − 1)Q2]e(t − τ2(t)) + eT(t − τ3(t))

× [(μ3 − 1)Q3]e(t − τ3(t))

+ f T(e(t))[τ1Q7 + τ2Q8] f (e(t))
+ gT(e(t))[Q4]g(e(t))
+ hT(e(t))[Q5 + τ3Q6]h(e(t))

+ gT(e(t − τ2(t)))[(μ2 − 1)Q4]g(e(t − τ2(t)))

+ hT(e(t − τ3(t)))[(μ3 − 1)Q5]h(e(t − τ3(t)))

= φTψφ,

(30)

where

φT =
[
eT(t), eT(t − τ1(t)), e

T × (t − τ2(t)), e
T

× (t − τ3(t)), f T(e(t)), gT(e(t)), hT(e(t)), gT

× (e(t − τ2(t))), h
T(e(t − τ3(t)))

]T
,

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 ψ12 0 0 ψ15 0 0 ψ18 0
∗ ψ22 0 0 ψ25 0 0 ψ28 0
∗ ∗ ψ33 0 0 0 0 0 0
∗ ∗ ∗ ψ44 0 0 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ψ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ψ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ψ11 = −2PC + 2βM�P − 2ρ

PK + P ĒS−1
1 ĒTPT + Q1 + Q2 + Q3,

ψ12 = DTPC − βDTPM� + ρDTPK ,

ψ15 = P Ā, ψ18 = P B̄,

ψ22 = PDT Ē S−1
2 ĒTDPT + (μ1 − 1)Q1,

ψ25 = −DT ĀP, ψ28 = −DT B̄ P,

ψ33 = (μ2 − 1)Q2, ψ44 = (μ3 − 1)Q3,

ψ55 = τ1Q7 + τ2Q8, ψ66 = Q4,

ψ77 = Q5 + τ3Q6, ψ88 = (μ2 − 1)Q4,

ψ99 = (μ3 − 1)Q5.

If ψ < 0, then LV (t, e(t)) < 0, so the drive system
and the response system get anti-synchronization. This
completes the proof. 
�
Remark 1 In the above proof, we construct a novel
Lyapunov function by employing a delay-fractionizing
approach in order to reduce the possible conservatism
induced by the Lyapunov function when dealing with
time delays.

When D = 0, from Theorem 1, we obtain the fol-
lowing corollary.

Corollary 1 Under Assumption 1, the error system
of the coupled memristor-based neural networks with
mixed time-varying delays can be described by

d[e(t)] =
[

− Ce(t) + Ã(t) f (e(t)) + B̃(t)g(e(t − τ2(t)))

+ Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds + βM�e(t)

]
dt

(31)

and (31) will be convergent, if there exist a positive
diagonal matrix P = diag(P1, P2, . . . , Pn), positive

123



2150 W. Wang et al.

matrices Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, S1, S2, and
a positive scalar λ such that the following LMIs hold:

P ≤ λI, (32)

τ3(S1 + S2) < Q6, (33)

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 0 0 0 P Ā 0 0 P B̄ 0
∗ ψ22 0 0 0 0 0 0 0
∗ ∗ ψ33 0 0 0 0 0 0
∗ ∗ ∗ ψ44 0 0 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ψ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ψ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ψ11 = −2PC + 2βM�P − 2ρPK

+P ĒS−1
1 ĒTPT + Q1 + Q2 + Q3,

ψ22 = (μ1 − 1)Q1, ψ33 = (μ2 − 1)Q2,

ψ44 = (μ3 − 1)Q3,

ψ55 = τ1Q7 + τ2Q8, ψ66 = Q4,

ψ77 = Q5 + τ3Q6, ψ88 = (μ2 − 1)Q4,

ψ99 = (μ3 − 1)Q5.

The randomly occurring memristor-based controller is
designed as
u(e(t)) = −ρ(t)K (e(t))e(t), (34)

Ke(t) ≤ K (e(t)) ≤ K̄ e(t), (35)
where K (t)εco{K (e(t))} and ρ(t) is a stochastic vari-
able that describes the following random events for sys-
tem (31),

{
Event 1: (31) experiences (34)
Event 2: (31) does not experience (34)

(36)

Let ρ(t) be defined by

ρ(t) =
{

1, if Event 1 occurs,
0, if Event 2 occurs,

(37)

where E[ρ(t)] = ρε[0, 1].
Remark 2 When D = 0, the systems are no longer
neutral-type neural networks. When Ẽ(t) = 0, the sys-
tems no longer have distributed time-varying delays.
We can also get the synchronization results from The-
orem 1 when D = 0 or Ẽ(t) = 0.

Next, we will give another controller which depends
on the time-varying delays.

Theorem 2 Under Assumptions 1, the error system
(7) of the coupled memristor-based neural networks
of neutral type with mixed time-varying delays will be
convergent, if there exist a positive diagonal matrix
P = diag(P1, P2, . . . , Pn), positive matrices Q1, Q2,
Q3, Q4, Q5, Q6, Q7, Q8, S1, S2, and a scalar λ > 0
such that the following LMIs hold:

P ≤ λI, (38)
τ3(S1 + S2) < Q6, (39)

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 ψ12 0 0 ψ15 0 0 ψ18 0
∗ ψ22 0 0 ψ25 0 0 ψ28 0
∗ ∗ ψ33 0 0 0 0 0 0
∗ ∗ ∗ ψ44 0 0 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ψ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ψ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0,

where

ψ11 = −2PC + 2βM�P − 2ρ1PK 1

+P ĒS−1
1 ĒTPT + Q1 + Q2 + Q3,

ψ12 = DTPC − βDTPM� + ρ1D
TPK 1 − ρ2PK 2,

ψ15 = P Ā, ψ18 = P B̄,

ψ22 = PDT Ē S−1
2 ĒTDPT

+(μ1 − 1)Q1 + 2ρ2D
TK 2P,

ψ25 = −DT ĀP, ψ28 = −DT B̄ P,

ψ33 = (μ2 − 1)Q2, ψ44 = (μ3 − 1)Q3,

ψ55 = τ1Q7 + τ2Q8, ψ66 = Q4,

ψ77 = Q5 + τ3Q6, ψ88 = (μ2 − 1)Q4,

ψ99 = (μ3 − 1)Q5.

The randomly occurring memristor-based controller is
designed as

u(e(t)) = −ρ1(t)K1(e(t))e(t)

− ρ2(t)K2(e(t))e(t − τ1(t)),
(40)

K 1e(t) ≤ K1(e(t)) ≤ K̄1e(t), (41)

K 2e(t) ≤ K2(e(t)) ≤ K̄2e(t), (42)

where K̃1(t)εco{K1(e(t))}, K̃2(t)εco{K2(e(t))},ρ1(t)
and ρ2(t) are stochastic variables which describe the
following random events for system (7),

{
Event 1 : (7) experiences (40)
Event 2 : (7) does not experience (40)

(43)
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Let ρ1(t), ρ2(t) be defined by

ρ1(t) =
{
1, if Event 1 occurs,
0, if Event 2 occurs,

(44)

ρ2(t) =
{
1, if Event 1 occurs, ,
0, if Event 2 occurs, ,

(45)

where E[ρ1(t)] = ρ1ε[0, 1], E[ρ2(t)] = ρ2ε[0, 1].

Proof Consider the Lyapunov–Krasovskii function as
the same as in Theorem 1. By Ito’s differential formula,
we could infer that

LV1(t, e(t)) = 2[e(t) − De(t − τ1(t))]TP
[−Ce(t) + Ã(t) f (e(t)) + B̃(t)g(e(t − τ2(t)))

+ Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds + βM�e(t)

− ρ1(t)K̃1(t)e(t) − ρ2(t)K̃2(t)(t − τ1(t))]
= eT(t)[−2PC]e(t) + eT(t)[2P Ã(t)] f (e(t))

+ eT(t)[2P B̃(t)]g(e(t − τ2(t)))

+ eT(t)[2P Ẽ(t)]
∫ t

t−τ3(t)
h(e(s))ds

+ eT(t)[2βM�P]e(t)
+ eT(t)[2P(−ρ1(t))K̃1(t)]e(t)
+ eT(t)[−2Pρ2(t)K̃2(t)]e(t − τ1(t))

+ eT(t − τ1(t))[2DTPC]e(t) + eT(t − τ1(t))

× [−2DT Ã(t)P] f (e(t)) + eT(t − τ1(t))[−2DTP B̃(t)]
× g(e(t − τ2(t))) + eT(t − τ1(t))[−2DTP Ẽ(t)]
− 2DP Ẽ(t)

∫ t

t−τ3(t)
h(e(s))ds

+ eT(t − τ1(t))[−2βDTPM�]e(t)
+ eT(t − τ1(t))[2DTPρ1(t)K̃1(t)]e(t)
+ eT(t − τ1(t))[2DTρ2(t)K̃2(t)P]e(t − τ1(t)).

(46)

And

E[LV (t, e(t))] ≤ eT(t)[−2PC + 2βM�P − 2ρ1PK 1

+ P ĒS−1
1 ĒTPT + Q1 + Q2 + Q3]e(t)

+ eT(t)[−2ρ2PK 2]e(t − τ1(t))

+ eT(t)[2P Ā] f (e(t)) + eT(t)[2P B̄]g(e(t − τ2(t)))

+ eT(t − τ1(t))[2DTPC − 2βDTPM�

+ 2ρ1D
TPK 1]e(t)

+ eT(t − τ1(t))[−2DT ĀP] f (e(t))
+ eT(t − τ1(t))[−2DTP B̄]g(e(t − τ2(t)))

+ eT(t − τ1(t))[PDT Ē S−1
2 ĒTDPT (47)

+ 2ρ2D
TK 2P + (μ1 − 1)Q1]e(t − τ1(t))

+ eT(t − τ2(t))[(μ2 − 1)Q2]e(t − τ2(t))

+ eT(t − τ3(t))[(μ3 − 1)Q3]e(t − τ3(t))

+ f T(e(t))[τ1Q7 + τ2Q8] f (e(t))
+ gT(e(t))[Q4]g(e(t)) + hT(e(t))[Q5 + τ3Q6]h(e(t))

+ gT(e(t − τ2(t)))[(μ2 − 1)Q4]g(e(t − τ2(t)))

+ hT(e(t − τ3(t)))[(μ3 − 1)Q5]h(e(t − τ3(t)))

= φTψφ,

where φT = [eT(t), eT(t − τ1(t)), eT(t − τ2(t)),
eT(t − τ3(t)), f T(e(t)), gT(e(t)), hT(e(t)), gT(e(t −
τ2(t))), hT(e(t − τ3(t)))]T. If ψ ≤ 0 in Theorem 2,
then LV (t, e(t)) < 0. So the coupled memristor-based
neural networks with mixed time-varying delays will
be convergent under the controller (40). This completes
the proof. 
�

When the neural networks (7) are not coupled, then
from Theorem 2, we obtain the following corollary.

d[e(t) − De(t − τ1(t))] = [−Ce(t) + Ã(t) f (e(t))

+ B̃(t)g(e(t − τ2(t))) + Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds]dt.

(48)

Remark 3 Theorem 1 makes the controller (10) a lit-
tle conservative because it only depends on e(t). In
Theorem 2, we construct a different controller, which
depends on both e(t) and e(t − τ1(t)), such that it is
less conservative than Theorem 1.

Remark 4 Compared with the randomly occurring
controller in [27], the controllers (10) and (40) are based
on memristor, which have memory characteristic.

Corollary 2 Under Assumptions 1, the uncoupled
memristor-based neural networks of neutral type with
mixed time-varying delays (48) will be convergent, if
there exist a positive diagonal matrix P=diag(P1, P2,
. . . , Pn), positive matrices Q1, Q2, Q3, Q4, Q5, Q6,
Q7, Q8, S1, S2, and a scalar λ > 0 such that the fol-
lowing LMIs hold:

P ≤ λI, (49)
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τ3(S1 + S2) < Q6, (50)

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 ψ12 0 0 ψ15 0 0 ψ18 0
∗ ψ22 0 0 ψ25 0 0 ψ28 0
∗ ∗ ψ33 0 0 0 0 0 0
∗ ∗ ∗ ψ44 0 0 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ψ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ψ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0,

where

ψ11 = −2PC − 2ρ1PK 1

+ P ĒS−1
1 ĒTPT + Q1 + Q2 + Q3,

ψ12 = DTPC + ρ1D
TPK 1 − ρ2PK 2,

ψ15 = P Ā, ψ18 = P B̄,

ψ22 = PDT Ē S−1
2 ĒTDPT

+ (μ1 − 1)Q1 + 2ρ2D
TK 2P,

ψ25 = −DT ĀP, ψ28 = −DT B̄ P,

ψ33 = (μ2 − 1)Q2, ψ44 = (μ3 − 1)Q3,

ψ55 = τ1Q7 + τ2Q8, ψ66 = Q4,

ψ77 = Q5 + τ3Q6, ψ88 = (μ2 − 1)Q4,

ψ99 = (μ3 − 1)Q5.

The randomly occurring memristor-based controller is
designed as

u(e(t)) = −ρ1(t)K1(e(t))e(t)

− ρ2(t)K2(e(t))e(t − τ1(t)),
(51)

K 1e(t) ≤ K1(e(t)) ≤ K̄1e(t), (52)

K 2e(t) ≤ K2(e(t)) ≤ K̄2e(t), (53)

where K̃1(t)εco{K1(e(t))}, K̃2(t)εco{K2(e(t))},ρ1(t)
and ρ2(t) are stochastic variables which describe the
following random events for system (48),

{
Event 1 : (48) experiences (51)
Event 2 : (48) does not experience (51)

(54)

Let ρ1(t), ρ2(t) be defined by

ρ1(t) =
{
1, if Event 1 occurs,
0, if Event 2 occurs,

(55)

ρ2(t) =
{
1, if Event 1 occurs,
0, if Event 2 occurs,

(56)

where E[ρ1(t)] = ρ1ε[0, 1], E[ρ2(t)] = ρ2ε[0, 1].

4 Illustrative Example

In this section, several examples are presented to illus-
trate the effectiveness of the results obtained above.
Consider a coupled two-dimensional memristor-based
recurrent neural network model as follows:

d [e(t) − De(t − τ1(t))]

= [ − Ce(t) + Ã(t) f (e(t)) + B̃(t)g(e(t − τ2(t)))

+ Ẽ(t)
∫ t

t−τ3(t)
h(e(s))ds + βMe(t)

]
dt,

(57)

where e(t) = (e1(t), e2(t)) is the state of the error
system (57) and the time-varying delays are τ1(t) =
τ2(t) = τ3(t) = 1

2 sin(t). Take f (ei (t)) = g(ei (t)) =
h(ei (t)) = 1

2 (| ei (t) + 1 | − | ei (t) − 1 |), and obvi-
ously, f (ei (t)) is odd and bounded.

Other parameters of the error system are given as
follows:

D =
(
0.1 0
0 0.2

)
,C =

(
0.6 0
0 0.7

)
,

a11(ei1(t)) = 0.3sin(ei1(t)), a12(ei1(t)) = −0.2sin(ei1(t)),

a21(ei2(t)) = −0.2sin(ei2(t)), a22(ei2(t)) = sin(ei2(t)),

a31(ei3(t)) = 0.6sin(ei3(t)), a32(ei3(t)) = 0.3sin(ei3(t)),

b11(ei1(t)) = 0.4sin(ei1(t)), b12(ei1(t)) = 0.3sin(ei1(t)),

b21(ei2(t)) = 0.5sin(ei2(t)), b22(ei2(t)) = 0.2sin(ei2(t)),

b31(ei3(t)) = 0.4sin(ei3(t)), b32(ei3(t)) = 0.2sin(ei3(t)),

e11(ei1(t)) = 0.3sin(ei1(t)), e12(ei1(t)) = 0.5sin(ei1(t)),

e21(ei2(t)) = 0.5sin(ei2(t)), e22(ei2(t)) = 0.3sin(ei2(t)),

e31(ei3(t)) = 0.3sin(ei3(t)), e32(ei3(t)) = 0.3sin(ei3(t)),

K (ei1(t)) = 0.5cos(ei1(t)), K (ei2(t)) = 0.6cos(ei2(t)).

We choose μ1 = μ2 = μ3 = 0.1, τ1 = 0.1, τ2 =
0.2, τ3 = 0.3, and

Ā =
(
0.3 0.2
0.2 1

)
, B̄ =

(
0.4 0.3
0.5 0.2

)
,

Ē =
(
0.3 0.5
0.5 0.3

)
, K =

(
0 0
0 0

)
,

M =
⎛
⎝

−2 1 1
1 −2 1
1 1 −2

⎞
⎠ .

Using the LMI toobox in MATLAB, we obtain the fol-
lowing feasible solutions to LMIs in Theorem 1

P =
(

0.2628 −0.0671
−0.0671 0.2497

)
,

Q1 =
(

2.032 0.0068
0.0068 2.041

)
,
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Fig. 1 (Color online) The curves of state error ei1(i = 1, 2, 3)
for the memristive neural networks with neutral type (57) under
the delay-independent randomly occurring controller (10), and
the expectation of control probability is E[ρ(t)] = 0.9
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Furthermore, we consider the synchronization error
system (57) under the controller (10), and E[ρ(t)] =
0.9. Figures 1 and 2 show the state error of system
(57) with the controller (10) is synchronized. Thus, we
verified Theorem 1.

In order to show the significant contribution to this
paper, we compare with the existed results in [28],
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Fig. 2 (Color online) The curves of state error ei2(i = 1, 2, 3)
for the memristive neural networks with neutral type (57) under
the delay-independent randomly occurring controller (10), and
the expectation of control probability is E[ρ(t)] = 0.9
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Fig. 3 (Color online) The curves of state error ei1(i = 1, 2, 3)
of memristive neural networks with mixed delays and without
neutral type under the memristive delay-independent randomly
occurring controller (10), and the expectation of control proba-
bility is E[ρ(t)] = 0.9

which is the memristive neural networks with mixed
delays andwithout the neutral-type part. Sowe let D =
0 in the error system (57)without neutral type under the
controller (10). Then, we get the error curves in Figs. 3
and 4. We summarize the comparisons between earlier
works and the obtained results. It is concluded from
this numerical example that the established results in
this paper are new and the model is less conservative
when compared to the existing results [28].

In order to compare two different memristive con-
trollers, we take the following example when the sys-
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Fig. 4 (Color online) The curves of state error ei2(i = 1, 2, 3)
of memristive neural networks with mixed delays and without
neutral type under the memristive delay-independent randomly
occurring controller (10), and the expectation of control proba-
bility is E[ρ(t)] = 0.9
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Fig. 5 (Color online) The curves of state error ei1(i =
1, 2, . . . , 15) of memristive neural networks of neutral type with
mixed delays under the memristive delay-dependent randomly
occurring controller (40), N = 15, and the expectation of con-
trol probability is E[ρ1(t)] = 0.8, E[ρ2(t)] = 0.7

tem (57) works under the controller (40). The num-
ber of nodes in the networks is N = 15, and we
take the same parameters as the above example. The
adjacency matrix M is produced by a small-world net-
work with rewiring probability 0.6 and the coupling
strength β = 1. And E[ρ1(t)] = 0.8, E[ρ2(t)] =
0.7, K1(ei1(t)) = 0.5cos(ei1(t)), K1(ei2(t)) =
0.6cos(ei2(t)), K2(ei1(t)) = 0.5sin(ei1(t)), K2

(ei2(t)) = 0.6sin(ei2(t)). Then, we get Figs. 5 and
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Fig. 6 (Color online) The curves of state error ei2(i =
1, 2, . . . , 15) of memristive neural networks of neutral type with
mixed delays under the memristive delay-dependent randomly
occurring controller (40), N = 15, and the expectation of con-
trol probability is E[ρ1(t)] = 0.8, E[ρ2(t)] = 0.7

6 which show the state error of the system. Thus, we
verified Theorem 2.

Remark 5 Comparedwith the time-varying timedelays
in [29,30], the mixed probabilistic time-varying delays
in [31] is less conservative. And in [31] authors studied
the neural networks with random coupling strengths,
then in this paper, we studied the neural networks under
the random occurring controller.

5 Conclusion

This paper proposed two kinds of randomly occurring
controllers in order to achieve the anti-synchronization
of coupled neutral-type memristive neural network
with mixed time-varying delays. According to the Lya-
punov stability method, linear matrix inequalities, and
the differential inclusion theory, these two kinds of
control strategies are successful in ensuring the con-
vergence of the system. It can well mimic the human
brain inmany applications, such as pattern recognition,
associative memories, and learning. Finally, numerical
examples are given to illustrate the effectiveness of the
proposed theories. For further research topics, it is rec-
ommended that the synchronization of coupled mem-
ristive neutral-type neural networks with mixed time-
varying delays via randomly occurring control should
be studied. Also, it is important to extend our results to
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memristive neutral-type neural networks with multiple
proportional delays.
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